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Abstract
We propose a conjectural formula for correlation functions of the Z-invariant
(inhomogeneous) eight-vertex model. We refer to this conjecture as ansatz. It
states that correlation functions are linear combinations of products of three
transcendental functions, with theta functions and derivatives as coefficients.
The transcendental functions are essentially logarithmic derivatives of the
partition function per site. The coefficients are given in terms of a linear
functional Trλ on the Sklyanin algebra, which interpolates the usual trace
on finite-dimensional representations. We establish the existence of Trλ and
discuss the connection to the geometry of the classical limit. We also conjecture
that the ansatz satisfies the reduced qKZ equation. As a non-trivial example of
the ansatz, we present a new formula for the next-nearest-neighbour correlation
functions.

PACS numbers: 02.20.Uw, 02.30.Ik, 05.50.+q, 75.10.Pq
Mathematics Subject Classification: 82B23, 81R12

1. Introduction

Exact description of correlation functions and their analysis is one of the central problems of
integrable lattice models. Significant progress has been made over the last decade towards
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this goal. In the study of correlation functions, a basic role is played by a multiple integral
representation, first found for the archetypical example of the spin 1/2-XXZ chain [17, 15,
20]. Subsequently, it has been generalized in several directions, to incorporate an external
field [20], unequal time [19], non-zero temperature [13] and finite chains [18]. Earlier in the
literature, extension to elliptic models has also been pursued. The free-field construction used
in the XXZ model was extended in [24] to the SOS models, resulting in an integral formula
for correlation functions of the ABF model. In [25], an integral formula was obtained for
the eight-vertex model by mapping the problem to the SOS counterpart. A novel free-field
representation of the eight-vertex model is being developed in [33, 34].

Recent studies have revealed another aspect of these integrals. Through examples at short
distance, it has been observed in the case of the homogeneous XXX chain that the relevant
integrals can be evaluated in terms of the Riemann zeta function at odd integers with rational
coefficients [5]. Similar calculations have been performed for the XXZ chain [23, 37]. This
phenomenon was explained later through a duality between the qKZ equations of level 0 and
level −4 [6, 7]. Motivated by these works, we have established in our previous papers [3, 4]
an algebraic representation (in the sense, no integrals are involved) for general correlation
functions of the inhomogeneous six-vertex model and its degeneration8. The aim of the
present paper is to continue our study and examine the eight-vertex model.

We formulate a conjectural formula for correlation functions (the ansatz) along the same
line with the six-vertex case. Consider the eight-vertex model where each column i (resp.
row j ) carries an independent spectral parameter ti (resp. 0). The object of our interest is the
matrix

hn(t1, . . . , tn) = 1

2n

3∑
α1,...,αn=0

εa1 · · · εan

〈
σ

α1
1 · · · σαn

n

〉
(σ α1 ⊗ · · · ⊗ σαn)T ∈ End((C2)⊗n),

where 〈·〉 denotes the ground-state average in the thermodynamic limit, σ 0 = 1, σ a

(1 � a � 3) are the Pauli matrices and T stands for the matrix transpose. Regard hn as a vector
via the identification End((C2)⊗n) � (C2)⊗2n and let sn denote the vector corresponding to
the identity. Our ansatz is that hn can be represented in the form

hn(t1, . . . , tn) = 2−n exp

∑
i<j

3∑
a=1

ωa(tij )X̂
(i,j)
a,n (t1, . . . , tn)

 sn.

Here, ωa(t) are scalar functions given explicitly in terms of the partition function per site (see
(2.32)). The matrices X̂

(i,j)
a,n are expressible by theta functions and derivatives. Leaving the

details to section 2.4, let us comment on the latter.
In the six-vertex case, X̂

(i,j)
a,n are defined in terms of a ‘trace’ of a monodromy matrix.

Here, ‘trace’ means the unique linear functional

Trλ : Uq(sl2) −→ C[q±λ] ⊕ λC[q±λ],

which for λ ∈ Z�0 reduces to the usual trace on the λ-dimensional irreducible representation
of Uq(sl2). In the eight-vertex case, we need an analogous functional Trλ, defined on the
Sklyanin algebra and taking values in the space of entire functions involving λ, theta functions
and derivatives. Compared with the trigonometric case, the existence of Trλ is more difficult to
establish. We do that by considering the classical limit and showing that, for generic values of
the structure constants, the computation of the trace of an arbitrary monomial can be reduced
to that of seven basic monomials. We have also compared our formula for Trλ with the results

8 Correlation functions of the XXZ and XXX chains are given in the limit where all the inhomogeneity parameters
are chosen to be the same. However, we have not succeeded in performing this homogeneous limit.
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by Fabricius and McCoy [8] for λ = 3, 4, 5. In the classical limit, the Sklyanin algebra
becomes the algebra of regular functions on an algebraic surface in C4, which turns out to be
a smoothing of a simple-elliptic singularity of Saito [29]. The reduction of the trace is closely
connected with the de Rham cohomology of this surface (see appendix A). Although we do
not use Saito’s results for our immediate purposes, we find this connection intriguing.

In the trigonometric case, it was shown [4] that the functions given by the above ansatz
satisfies the reduced qKZ equation. The steps of the proof carry over straightforwardly to the
elliptic case, except for one property (the cancellation identity). Unfortunately, we have not
succeeded in proving this last relation. It remains an open question to show that our ansatz in
the elliptic case satisfies the reduced qKZ equation.

To check the validity of the ansatz, we examine the simplest case n = 2. In this case, an
exact answer for the homogeneous chain is obtained as derivatives of the ground-state energy
of the spin-chain Hamiltonian. Our formula matches with it. We also present an explicit
formula for the correlators with n = 3. It agrees well numerically with the known integral
formulae of [25, 26].

The plan of the paper is as follows. In section 2, we introduce our notation and formulate
the ansatz for correlation functions. In section 3, we discuss the validity of the cancellation
identity and give arguments in its favour. Section 4 is devoted to the examples for correlators
of the nearest- and next-nearest-neighbour spins. We also discuss briefly the trigonometric
limit. In appendix A, we prove the existence of the trace functional. As was mentioned above,
the classical limit of the Sklyanin algebra is related to an affine algebraic surface and the trace
functional tends to an integral over a certain cycle on it. We explain the connection between
this picture and Saito’s theory. In appendix B, we give an explicit description of the integration
cycles. Appendix C contains technical lemmas about the trace. Finally, in appendix D, we
discuss the transformation properties of the matrices X̂

(i,j)
a,n .

2. Ansatz for correlation functions

In this section, we introduce our notation and formulate the ansatz for correlation functions of
an inhomogeneous eight-vertex model, following the scheme developed in [4].

2.1. R matrix

We consider an elliptic R matrix depending on three complex parameters t, η, τ . We assume
Im τ > 0 and η �∈ Q+Qτ .9 We will normally regard η, τ as fixed constants and suppress them
from the notation. Let θα(t) = θα(t |τ) (0 � α � 4, θ4(t) = θ0(t)) denote the Jacobi elliptic
theta functions associated with the lattice Z + Zτ [14]. We set

[t] := θ1(2t)

θ1(2η)
.

The R matrix is given by

R(t) := ρ(t)
r(t)

[t + η]
∈ End(V ⊗ V ), (2.1)

r(t) := 1

2

3∑
α=0

θα+1(2t + η)

θα+1(η)
σα ⊗ σα, (2.2)

where V = Cv+ ⊕ Cv−.

9 Later on, we also assume that η is generic.
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The matrix r(t) = r12(t) is the unique entire function satisfying

r12(0) = P12,

σ a
1 σa

2 r12(t) = r12(t)σ
a
1 σa

2 (a = 1, 2, 3),

r12

(
t +

1

2

)
= −σ 1

1 r12(t)σ
1
1 ,

r12

(
t +

τ

2

)
= −σ 3

1 r12(t)σ
3
1 × e−2π i(2t+η+τ/2).

Here, P ∈ End(V ⊗V ) signifies the transposition Pu⊗v = v⊗u. As is customary, the suffix
of a matrix indicates the tensor component on which it acts non-trivially, e.g. σα

1 = σα ⊗ 1,
σα

2 = 1 ⊗ σα .
The normalizing factor ρ(t) is chosen to ensure that the partition function per site of the

corresponding eight-vertex model equals 1. Its explicit formula depends on the regime under
consideration and will be given later in (2.28) and (2.29). In each case, it satisfies

ρ(t)ρ(−t) = 1, ρ(t)ρ(t − η) = [t]

[η − t]
.

We will often write tij = ti − tj . The basic properties of R(t) are the Yang–Baxter
equation

R12(t12)R13(t13)R23(t23) = R23(t23)R13(t13)R12(t12) (2.3)

and

R(t) = PR(t)P, (2.4)

R(−η) = −2P−, (2.5)

R12(t)R21(−t) = 1, (2.6)

R12(t)P−
23 = −R13(−t − η)P−

23. (2.7)

In (2.5), P− = (1 − P)/2 denotes the projection onto the one-dimensional subspace spanned
by

s := v+ ⊗ v− − v− ⊗ v+ ∈ V ⊗ V.

We will also use

Ř(t) = PR(t).

2.2. Sklyanin algebra

Along with the R matrix, we will need the L-operator whose entries are generators of the
Sklyanin algebra [35, 36].

Recall that the Sklyanin algebra A is an associative unital C-algebra defined through four
generators Sα (α = 0, 1, 2, 3) and quadratic relations

[S0, Sa] = iJbc(SbSc + ScSb), (2.8)

[Sb, Sc] = i(S0Sa + SaS0), (2.9)
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where (a, b, c) runs over cyclic permutations of (1, 2, 3). The Jbc are the structure constants
given by

Jbc = −Jb − Jc

Ja

= εa

θ1(η)2θa+1(η)2

θb+1(η)2θc+1(η)2
, (2.10)

Ja = θa+1(2η)θa+1

θa+1(η)2
, (2.11)

where

ε2 = −1, εα = 1(α �= 2).

Here and after, theta functions without arguments stand for the theta zero values, θa = θa(0)

and θ ′
1 = θ ′

1(0).
Since the defining relations are homogeneous, A is a Z�0-graded algebra, A = ⊕n�0An,

where the generators Sa all belong to A1. We also have a Z2 × Z2 grading, A =
⊕(m,n)∈Z2×Z2A(m,n), defined by the assignment Sα ∈ Aᾱ , where

0̄ = (0, 0), 1̄ = (1, 0), 2̄ = (1, 1), 3̄ = (0, 1) ∈ Z2 × Z2. (2.12)

To make distinction, the Z�0 grading and the Z2 × Z2 grading will be referred to as ‘degree’
and ‘colour’, respectively. Thus, Sα has degree 1 and colour ᾱ.

There are two central elements of degree 2 and colour 0̄:

K0 :=
3∑

α=0

S2
α, K2 :=

3∑
a=1

JaS
2
a . (2.13)

We call them Casimir elements.
Introduce the generating function (L-operator)

L(t) := 1

2

3∑
α=0

θα+1(2t + η)

θα+1(η)
Sα ⊗ σα ∈ A ⊗ End(V ).

The defining relations (2.8) and (2.9) are equivalent to

R12(t − s)L1(t)L2(s) = L2(s)L1(t)R12(t − s). (2.14)

From (2.13), we have

L1

(
t

2

)
L2

(
t

2
− η

)
P−

12 = −1

4

(
θ1(η − t)θ1(η + t)

θ1(η)2
K0 +

θ1(t)
2

θ1(η)2
K2

)
P−

12. (2.15)

We will be concerned with representations in series (a) of [36], which are analogues of
finite-dimensional irreducible representations of sl2. For each non-negative integer k, let V(k)

denote the vector space of entire functions f (u) with the properties

f (u + 1) = f (u) = f (−u), f (u + τ) = e−2π ik(2u+τ)f (u).

We have dimV(k) = k + 1. The following formula defines a representation π(k) : A →
End(V(k)) [36]10:

(π(k)(Sα)f )(u) =
√

εαθα+1(η)

θ1(2η)θ1(2u)
(θα+1(2u − kη) eη∂u − θα+1(−2u − kη) e−η∂u)f (u). (2.16)

10 We have modified equation (6) of [36] by a factor θ1(2η).
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Here,
√

ε2 = i,
√

εα = 1 (α �= 2) and (e±η∂uf )(u) = f (u ± η). In particular, if k = 1, then
in an appropriate basis we have

π(1)(Sα) = σα, (π(1) ⊗ id)L(t) = r(t).

On V(k), the Casimir elements K0 and K2 act as scalars K0(k + 1) and K2(k + 1), respectively,
where

K0(λ) = 4
θ1(λη)2

θ1(2η)2
, K2(λ) = 4

θ1(λη + η)θ1(λη − η)

θ1(2η)2
. (2.17)

2.3. The functional Trλ

In order to formulate the ansatz, we need to consider the trace trV(k)π (k)(A) of an element
A ∈ A as a function of the dimension k + 1. The precise meaning is as follows.

For each A ∈ A, one can assign a unique entire function TrλA in λ with the following
properties:

(i) TrλA|λ=k+1 = trV(k)π (k)(A) holds for all k ∈ Z�0.
(ii) If A ∈ An, TrλA has the functional form

Tr t
η
A = θ1(t)

n ×
{
gA,0(t) (n: odd),

gA,1(t) − t
η
gA,2(t) (n: even),

(2.18)

where gA,0(t), gA,2(t) and gA,3(t) := gA,1(t + τ) − gA,1(t) are elliptic functions with
periods 1, τ . In addition, gA,1(t + 1) = gA,1(t).

For example,

Trλ1 = λ, (2.19)

TrλSα = 2δα0
θ1(λη)

θ1(2η)
, (2.20)

TrλS
2
α = 2

θ ′
1θ1(2η)3

(Fα1(λη) − λFα2(λη)), (2.21)

where

Fα1(t) = εαθα+1(η)2 ∂

∂t
(θα+1(t + η)θα+1(t − η)), (2.22)

Fα2(t) = εαθα+1(η)2 ∂

∂η
(θα+1(t + η)θα+1(t − η)). (2.23)

For reference, we set

Fα3(t) = εαθα+1(η)2θα+1(t + η)θα+1(t − η). (2.24)

Trλ also satisfies

Trλ(AB) = Trλ(BA), (2.25)

Trλ(KiA) = Ki(λ)Trλ(A) (i = 0, 2), (2.26)

TrλA = 0 (A ∈ A(m,n), (m, n) �= (0, 0)). (2.27)

The derivation of (2.27) as well as (2.20) and (2.21) is sketched in appendix C. In appendix A
we show that, for generic η, any element A ∈ A

/∑3
α=0[Sα,A] can be written as a C[K0,K2]-

linear combination of seven monomials: 1, S0, S1, S2, S3, S
2
0 , S2

3 . Hence, TrλA is completely
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determined by the properties (2.25)–(2.27) along with (2.19)–(2.21). However, an effective
algorithm for the reduction is not known to us. The situation is in sharp contrast to the
trigonometric case, where a simple recursive procedure for calculating Trλ is available (see
[4]). It would be useful if one can find a more direct expression for the trace using Q-operators,
as is done for the XXZ model in [22].

In this connection, note that by the above rule, TrλA has a simpler structure for elements
of odd degree than those of even degree, since in the former case it is a polynomial of θ1(t + c)

(c ∈ C) without involving derivatives. The subtle difference between finite spin chains with
odd length and those with even length has been noted in the context of Q-operators [27, 9, 21].

2.4. The ansatz

Consider an inhomogeneous eight-vertex model, where each column i (resp. row j ) carries a

spectral parameter ti (resp. 0). The Boltzmann weights are given by the entries R
ε′

1,ε
′
2

ε1,ε2 (ti) of
the R matrix (2.1). We choose the normalizing factor ρ(t) in (2.1) in accordance with the two
regimes:

(i) η, t ∈ iR,−iη > 0 (disordered regime);
(ii) η, t ∈ R, η < 0 (ordered regime).

In the disordered regime, ρ(t) = ρdis(t) is given by [1]

ρdis(t) := e−2π it × γ (2η − 2t)

γ (2η + 2t)

γ (4η + 2t)

γ (4η − 2t)
,

γ (u) = �(u, 4η, τ),

(2.28)

where

�(u, σ, τ ) :=
∞∏

j,k=0

1 − e2π i((j+1)τ+(k+1)σ−u)

1 − e2π i(jτ+kσ+u)

is the elliptic gamma function [28]. In the ordered regime, the formula for ρ(t) = ρord(t) is
changed to

ρord(t) = e−4π iηt/τ ρ ′(t ′), (2.29)

where ρ ′(t ′) is given by the right-hand side of (2.28) with t, η, τ being replaced by

t ′ = t

τ
, η′ = η

τ
, τ ′ = − 1

τ
, (2.30)

respectively.
By correlation functions we mean the ground-state averages

〈
σ

α1
1 · · · σαn

n

〉
of a product

of spin operators on consecutive columns 1, . . . , n on a same row of the lattice. The
thermodynamic limit is assumed. We arrange them into a matrix

hn(t1, . . . , tn) = 1

2n

3∑
α1,...,αn=0

〈
σ

α1
1 · · · σαn

n

〉
(σ α1)T ⊗ · · · ⊗ (σ αn)T ∈ End(V ⊗n),

where
(
σα

i

)T = εασα
i stands for the transposed matrix. Because of the ‘Z-invariance’ [2],

it does not depend on ti with i < 1 or i > n. When t1 = · · · = tn, each
〈
σ

α1
1 · · · σαn

n

〉
is a

correlation function of the infinite XYZ spin chain

HXYZ =
∞∑

j=−∞

(
I 1σ 1

j σ 1
j+1 + I 2σ 2

j σ 2
j+1 + I 3σ 3

j σ 3
j+1

)
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at zero temperature (the coefficients I a will be given below in (4.5)). hn may be viewed as
the density matrix of a finite sub-system of length n, regarding the rest of the spins as an
environment.

From now on, we fix n and write j̄ = 2n − j + 1. We regard hn as a 22n-dimensional
vector through the identification End(V ⊗n) � V ⊗2n given by

Eε1,ε̄1 ⊗ · · · ⊗ Eεn,ε̄n
�→

 n∏
j=1

ε̄j

 vε1 ⊗ · · · ⊗ vεn
⊗ v−ε̄n

⊗ · · · ⊗ v−ε̄1 , (2.31)

where Eε,ε′ = (δε,αδε′,β)α,β=±.
Let us explain the constituents which enter the ansatz.
First, we define three functions in terms of the factor ρ(t) (given in (2.28) or (2.29) by

ω1(t) := ∂

∂t
log ϕ(t), ω2(t) := ∂

∂η
log ϕ(t), ω3(t) := ∂

∂τ
log ϕ(t), (2.32)

where we have set

ϕ(t) := ρ(t)4 · θ1(2η − 2t)

θ1(2η + 2t)
.

They are a meromorphic solution of the system of difference equations

ω1(t − η) + ω1(t) = q1(t),

ω2(t − η) + ω2(t) − ω1(t − η) = q2(t),

ω3(t − η) + ω3(t) = q3(t),

where

q1(t) := ∂

∂t
log ψ(t), q2(t) := ∂

∂η
log ψ(t), q3(t) := ∂

∂τ
log ψ(t) (2.33)

and

ψ(t) := θ1(2t)3θ1(2t − 4η)

θ1(2t − 2η)3θ1(2t + 2η)
.

The next ingredient are the matrices X̂
(i,j)
a,n (a = 1, 2, 3, 1 � i �= j � n). Consider a

‘transfer matrix’

X̂n(t1, . . . , tn) := 1

[t1,2]
∏n

p=3[t1,p][t2,p]
Trt1,2/η

(
T [1]

n

(
t1 + t2

2
; t1, . . . , tn

))
P12P−

11̄P
−
22̄.

(2.34)

We used the functional Trλ introduced in the previous section and

T [1]
n (t; t1, . . . , tn) := L2̄(t − t2 − η) · · · Ln̄(t − tn − η)Ln(t − tn) · · · L2(t − t2).

Note the presence of the permutation P12 and the projectors P−
11̄P

−
22̄ in (2.34).

For i < j , we define

X̂(i,j)
n (t1, . . . , tn) = X̂(j,i)

n (t1, . . . , tn) := R(i,j)
n (t1, . . . , tn)

× X̂n(ti , tj , t1, . . . , t̂i , . . . , t̂j , . . . , tn)R
(i,j)
n (t1, . . . , tn)

−1. (2.35)

Here, R
(i,j)
n stands for the product of R matrices

R(i,j)
n (t1, . . . , tn) := Ři,i−1(ti,i−1) · · · Ř2,1(ti,1)

×Řj,j−1(tj,j−1) · · · Ři+2,i+1(tj,i+1) · Ři+1,i (tj,i−1) · · · Ř3,2(tj,1)

×Ři−1,ī (ti−1,i ) · · · Ř1̄2̄(t1,i )

×Řj−1,j̄ (tj−1,j ) · · · Ři+1,i+2(ti+1,j ) · Ři,i+1(ti−1,j ) · · · Ř2̄,3̄(t1,j ). (2.36)
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Finally, for all i �= j, X̂
(ij)
a,n are defined by

cX̂
(i,j)

1,n (t1, . . . , tn) := X̂(i,j)
n (t1, . . . , tn) − tij�

(i)
1 X̂(i,j)

n (t1, . . . , tn), (2.37)

cX̂
(i,j)

2,n (t1, . . . , tn) = −η�
(i)
1 X̂(i,j)

n (t1, . . . , tn), (2.38)

cX̂
(i,j)

3,n (t1, . . . , tn) := �(i)
τ X̂(i,j)

n (t1, . . . , tn) − τ�
(i)
1 X̂(i,j)

n (t1, . . . , tn), (2.39)

where c = −2θ ′
1/θ1(2η) and

�(i)
a f (. . . , ti , . . .) = f (. . . , ti + a, . . .) − f (. . . , ti , . . .).

As we show in appendix D, X̂
(ij)
a,n (t1, . . . , tn) are doubly periodic in tk with periods 1, τ . The

only exception is the case a = 1, k = i or j and with respect to the shift by τ , where the
transformation law becomes

�(i)
τ X̂

(i,j)

1,n (t1, . . . , tn) = �
(j)
−τ X̂

(i,j)

1,n (t1, . . . , tn) = X̂
(i,j)

3,n (t1, . . . , tn).

Conversely, we have

X̂(ij)
n (t1, . . . , tn) = c

(
X̂

(i,j)

1,n (t1, . . . , tn) − tij

η
X̂

(i,j)

2,n (t1, . . . , tn)

)
.

We compute the trace in formula (2.35) by using formulae (2.17) and (2.21). The separation
of X̂

(i,j)
n into two parts X̂

(i,j)

1,n and X̂
(i,j)

2,n comes from that of TrλS2
α into Fα1(λη) and Fα2(λη).

Note that X̂
(j,i)

1,n = X̂
(i,j)

1,n and X̂
(j,i)
a,n = −X̂

(i,j)
a,n for a = 2, 3.

We are now in a position to state our conjecture. Let

sn :=
n∏

p=1

spp̄

be the vector corresponding to the identity by the map (2.31).

Conjecture. Correlation functions of the inhomogeneous eight-vertex model are given by the
formula

hn(t1, . . . , tn) = 2−n exp

∑
i<j

3∑
a=1

ωa(tij )X̂
(i,j)
a,n (t1, . . . , tn)

 sn, (2.40)

where ωa(t) and X̂
(i,j)
a,n are defined, respectively, by (2.32) and (2.34)–(2.39).

3. Reduced qKZ equation

hn is known to satisfy the following set of equations [16]:

hn(. . . , tj+1, tj , . . .) = Řj,j+1(tj,j+1)Řj+1,j̄ (tj+1,j )hn(. . . , tj , tj+1, . . .)

(1 � j � n − 1), (3.1)

hn(. . . , tj − η, . . .) = A(j)
n (t1, . . . , tn)hn(. . . , tj , . . .), (3.2)

P−
1,1̄ · hn(t1, . . . , tn)1,...,n,n̄,...,1̄ = 1

2 s11̄hn−1(t2, . . . , tn)2,...,n,n̄,...,2̄. (3.3)

Here,

A(j)
n (t1, . . . , tn)= (−1)nRj,j−1(tj,j−1 − η) · · · Rj,1(tj,1 − η)Rj̄,j+1(tj,j+1 − η) · · ·

× Rj̄,n̄(tj,n − η)Pj,j̄Rj,n(tj,n) · · · Rj,j+1(tj,j+1)Rj̄,1̄(tj,1) · · · Rj̄,j−1(tj,j−1).

(3.4)
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In this section, assuming a conjectural identity, we explain that these relations are valid also
for the ansatz.

3.1. Properties of �̂
(i,j)
n

Consider the expression

�̂(i,j)
n (t1, . . . , tn) =

3∑
a=1

ωa(tij )X̂
(i,j)
a,n (t1, . . . , tn),

which enters the ansatz (2.40). In [4], for the XXZ model, the following relations are derived.

Exchange relation:

Řk,k+1(tk,k+1)Řk+1,k(tk+1,k)�̂
(i,j)
n (. . . , tk, tk+1, . . .)

= �̂(πk(i),πk(j))
n (. . . , tk+1, tk, . . .)Řk,k+1(tk,k+1)Řk+1,k(tk+1,k), (3.5)

Here, πk signifies the transposition (k, k + 1).

Difference equations:

�̂(i,j)
n (t1, . . . , tk − η, . . . , tn)

= A(k)
n (t1, . . . , tn)�̂

(i,j)
n (t1, . . . , tn)A

(k)
n (t1, . . . , tn)

−1 (k �= i, j),

�̂(i,j)
n (t1, . . . , ti − η, . . . , tn)sn

= A(i)
n (t1, . . . , tn)

(
�̂(i,j)

n (t1, . . . , tn) + Ŷ (i,j)
n (t1, . . . , tn)

)
sn. (3.6)

In the last line, we have set

Ŷ (i,j)
n (t1, . . . , tn) :=

3∑
a=1

qa(tij )X̂
(i,j)
a,n (t1, . . . , tn),

where qa(t) are given by (2.33).

Recurrence relation:

P−
1,1̄�̂

(i,j)
n (t1, . . . , tn) =

{
0 (1 = i < j � n),

�̂
(i−1,j−1)

n−1 (t2, . . . , tn)2,...,n,n̄,...,2̄P−
1,1̄ (2 � i < j � n).

(3.7)

Commutativity: For distinct indices i, j, k, l,

�̂(i,j)
n (t1, . . . , tn)�̂

(k,l)
n (t1, . . . , tn) = �̂(k,l)

n (t1, . . . , tn)�̂
(i,j)
n (t1, . . . , tn). (3.8)

Nilpotency:

�̂(i,j)
n (t1, . . . , tn)�̂

(k,l)
n (t1, . . . , tn) = 0 if {i, j} ∩ {k, l} �= ∅. (3.9)

The proofs of these relations given in [4] are based only on the properties (2.3) and (2.4)–(2.7)
of the R matrix and (2.14) and (2.15) of the L-operator. Hence, they carry over to the elliptic
case as well.

As is shown in [4], proposition 4.1, equations (3.5)–(3.9) guarantee the validity of the
fundamental properties (3.1)–(3.3) for the ansatz, provided one additional identity holds.

Cancellation identity: n∑
j=2

Ŷ (1,j)
n (t1, . . . , tn) +

(
A(1)

n (t1, . . . , tn)
−1 − 1

) sn = 0. (3.10)
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So far we have not been able to prove the cancellation identity. In the next subsection, we
suggest a possible approach towards its proof.

3.2. Cancellation identity

Set

Q(i)
n (t1, . . . , tn) =

 n∑
j=2

Ŷ (1,j)
n (t1, . . . , tn) +

(
A(1)

n (t1, . . . , tn)
−1 − 1

) sn. (3.11)

We regard it as a matrix via the isomorphism (2.31).
Besides the obvious translation invariance, Qn = Q(1)

n has the following properties:

n∏
j=2

θ1(2t1,j ) · Qn(t1, . . . , tn) is entire, (3.12)

Qn

(
. . . , tj +

1

2
, . . .

)
= σ 1

j Qn(. . . , tj , . . .)σ
1
j (1 � j � n), (3.13)

Qn

(
. . . , tj +

τ

2
, . . .

)
= σ 3

j Qn(. . . , tj , . . .)σ
3
j (1 � j � n), (3.14)

Řj,j+1(tj,j+1)Qn(. . . , tj , tj+1, . . .) = Qn(. . . , tj+1, tj , . . .)Řj,j+1(tj,j+1) (2 � j � n− 1),

(3.15)

Qn(t1, . . . , tn−1, tn)P−
n−1,n|tn−1=tn+η = Qn−2(t1, . . . , tn−2)P−

n−1,n, (3.16)

tr1Qn(t1, . . . , tn) = 0, (3.17)

trnQn(t1, . . . , tn) = Qn−1(t1, . . . , tn−1). (3.18)

These relations are verified in a way similar to those in [4]. The derivation of (3.13)–(3.14)
rests on the transformation laws of X̂

(i,j)
a,n , which we discuss in appendix D.

From the properties (3.12)–(3.14), Qn can be written as

n∏
j=2

θ1(2t1j ) × Qn(t1, . . . , tn) =
3∑

α1,...,αn=0

καn,...,α1

n∏
j=1

θαj +1(2t1j )

θαj +1(η)
σ

α1
1 · · · σαn

n , (3.19)

with some καn,...,α1 ∈ C. Terms with α1 = 0 are actually absent in the sum, in accordance with
(3.17). For convenience, we set καn,...,α2,0 = 0. Note that (3.13), (3.14) and the translation
invariance imply

καn,...,α1 = 0 unless
n∑

j=1

ᾱj = (0, 0). (3.20)

By induction, assume Qm = 0 for m < n. We are going to argue that Qn is then
determined up to a multiplicative constant (see lemma 3.1).

By (3.16), the induction hypothesis and (3.15), we have

Qn(. . . , tj , tj+1, . . .)P−
j,j+1|tj =tj+1+η = 0 (2 � j � n − 1). (3.21)

By (3.18), we may also assume

καn,...,α1 = 0 unless αn �= 0. (3.22)
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Quite generally, consider a matrix of the form

U1,2(u, v) =
3∑

α,β=0

κβα

θα+1(2u)

θα+1(η)

θβ+1(2v)

θβ+1(η)
σα

1 σ
β

2 .

Then, the relations

Ř12(u − v)U1,2(u, v) = U1,2(v, u)Ř12(u − v), (3.23)
U1,2(u + η, u)P−

1,2 = 0 (3.24)

are equivalent to the following relations for the coefficients κba:

κa,0 − κ0,a = iJbc(κc,b + κb,c), κb,a − κa,b = i(κc,0 + κ0,c),

3∑
α=0

κα,α = 0,

3∑
a=1

Jaκa,a = 0.

Here, a, b, c are cyclic permutations of 1, 2, 3, and Ja , Jbc are as in (2.10) and (2.11). The
above relations have the same form as those derived from the quadratic relations (2.8) and (2.9)
and from the Casimir elements (2.13), respectively. Consider the quotient Ā of the Sklyanin
algebra modulo the relations that the Casimir elements are zero. This is a graded algebra,

Ā =
∞⊕

n=0

Ān.

From the above considerations, one easily concludes that there exist three linear
functionals κa (a = 1, 2, 3) on Ān−1 such that

καn,...,α2,a = κa

(
Sαn

· · · Sα2

)
,

which satisfy the additional condition

κa(S0A) = 0.

In the Sklyanin algebra with generic parameter η, any monomial Sα2 · · · Sαn
can be reduced

to a linear combination of ordered monomials S
ν0
0 S

ν3
3 S

ν2
1 S

ν1
2 with ν1, ν2 ∈ {0, 1}, by using the

quadratic relations and Casimir elements (PBW basis) [10, 11]. Together with (3.20), this
means that each functional κa is defined by one constant, that is,

κ1
(
Sn−2

3 S1
)
, κ2

(
Sn−2

3 S2
)
, κ3

(
Sn−1

3

)
for n even,

κ1
(
Sn−2

3 S2
)
, κ2

(
Sn−2

3 S1
)
, κ3

(
Sn−3

3 S1S2
)

for n odd.
(3.25)

There remain three coefficients. In order to finish the proof of the cancellation identity, it
remains to show that these coefficients vanish.

In addition to (3.15), we have also the relation

Ř12(λ12)Qn(t1, t2, . . .)Ř12(λ12)
−1 = Q(2)

n (t2, t1, . . .).

The poles of the R matrix on the left-hand side are not the poles of Q(2)
n . This entails the

relation

P−
12Qn(t1, t2, . . .)r12(1) = 0,

which can be rewritten in terms of functionals κa as follows:

2κa (AS0) − i(1 + Jbc)κc (ASb) + i(1 − Jbc)κb (ASc) = 0, ∀A ∈ Ān−2. (3.26)

These equations can be viewed as a system of linear equations for three constants (3.25).
Certainly, these equations are not explicit since for every A we have to perform the procedure
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of reducing to PBW form. This huge system of homogeneous linear equations does not allow
us to prove that the constants in question vanish; rather they reduce them to one constant. Let
us explain this point. First, it is clear that equations (3.26) correspond to the following relation
in Ān:

2S0Sa − i(1 + Jbc)SbSc + i(1 − Jbc)ScSb = 0,

obtained by solving (2.8) and (2.9) for S0Sa . So, it is easy to see that all our equations
including (3.26) are satisfied by the following construction. Consider a linear functional κ on
Ān such that κ

(
Sα1 · · · Sαn

) = 0 unless
∑n

j=1 ᾱj = (0, 0), and

κ(AS0) = 0.

Then, all the requirements are satisfied by

κa(A) = κ(ASa).

On the other hand, the number of solutions to the system of linear equations (3.26) for three
constants cannot be bigger for arbitrary η than it is for η = 0. In the latter case, the algebra is
commutative (see appendix A, notably (A.4) and equations (3.26) become

κcl
a (SbA) = κcl

b (SaA),

with an additional condition κcl
a (S0A) = 0. It is easy to see that this gives a system of three

equations for three constants whose rank equals 2.
Thus, we come to the conclusion

Lemma 3.1. Under the induction hypothesis, we have

καn,...,α1 = κ
(
Sαn

· · · Sα1

)
,

where κ is a linear functional on Ān satisfying

κ
(
Sαn

· · · Sα1

) = 0 unless
n∑

j=1

ᾱj = (0, 0), κ(AS0) = κ(S0A) = 0,

and as such is defined by one constant:

κ
(
Sn

3

)
for n even,

κ
(
Sn−2

3 S1S2
)

for n odd.

Unfortunately, we were not able to show that this remaining constant equals zero. The
problem is still open.

4. Examples

In this section we write down the ansatz in the simplest cases n = 2, 3. We also consider the
trigonometric limit.

4.1. The case n = 2

In the case n = 2,�
(1,2)
2 (t1, t2) can be readily found from (2.21). The function h2(t1, t2) is

given as follows:

h2(t1, t2) = 1

4
− 1

4[t12]

3∑
a=1

Ha+1(2t12)σ
a ⊗ σa,
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where

Ha+1(2t) := εaθ
2
a+1θa+1(2η)θa+1(2t)

4(θ ′
1)

2θ1(2η)2

(
θ ′
a+1(2t)

θa+1(2t)
ω1(t) +

θ ′
a+1(2η)

θa+1(2η)
ω2(t) − 4π iω3(t)

)
.

This gives the formula for the nearest-neighbour correlators of the inhomogeneous chain:〈
σa

1 σa
2

〉 = −θ1(2η)

θ1(2t)
Ha+1(2t), (4.1)

where a = 1, 2, 3 and t = t12. Noting that Ha+1(2t) is odd in t, we obtain
〈
σa

1 σa
2

〉 =
−θ1(2η)H ′

a+1(0)/θ ′
1 in the homogeneous limit t → 0, or more explicitly we have〈

σa
1 σa

2

〉 = − εaθ
2
a+1

8θ ′
1

3
θ1(2η)

(
2θ ′′

a+1(0)θa+1(2η) + θa+1θ
′
a+1(2η)

∂

∂η
− 4π iθa+1θa+1(2η)

∂

∂τ

)
ω1(0).

(4.2)

Let us check formula (4.2) against known results. As is well known, the XYZ Hamiltonian
is obtained by differentiating the transfer matrix of the eight-vertex model

TL(t) = tr(R0L(t) · · · R01(t))

as

TL(0)−1T ′
L(0) =

L∑
j=1

(
3∑

a=1

v′
a(0)σ a

j σ a
j+1

)
+ Lv′

0(0), (4.3)

where L is the length of the chain, and we have set Ř(t) = ∑3
α=0 vα(t)σ α ⊗ σα . As it

was mentioned already, the R matrix (2.1) is so normalized that in the thermodynamic limit
L → ∞ the free energy per site of the eight-vertex model is zero. Therefore, taking the
ground-state average of (4.3), we obtain

3∑
a=1

I a
〈
σa

1 σa
2

〉 = −I 0, (4.4)

with Iα = v′
α(0)θ1(2η)/θ ′

1. Explicitly, we have

I a = θa+1(2η)

θa+1
(a = 1, 2, 3),

I 0 = θ1(2η)

θ ′
1

1

4
ω1(0).

(4.5)

The average over the normalized ground state has the property δ〈HXYZ〉 = 〈δHXYZ〉, where δ

stands for the variation of the coefficients I a . Hence, we have in addition

3∑
a=1

∂I a

∂η

〈
σa

1 σa
2

〉 = −∂I 0

∂η
, (4.6)

3∑
a=1

∂I a

∂τ

〈
σa

1 σa
2

〉 = −∂I 0

∂τ
. (4.7)

The nearest-neighbour correlators
〈
σa

1 σa
2

〉
are completely determined by the linear

equations (4.4), (4.6) and (4.7). Using Riemann’s identity and the heat equation
4π i∂θα(t |τ)/∂τ = ∂2θα(t |τ)/∂t2, one can verify that our formula (4.2) indeed gives the
unique solution.
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4.2. The case n = 3

Let us proceed to the next case n = 3. Written in full, h3(t1, t2, t3) reads

h3(t1, t2, t3) = 1

8
− 1

16

1

[t12][t13][t23]

∑
(α,β,γ ) �=(0,0,0)

ᾱ+β̄+γ̄=0̄

σα ⊗ σβ ⊗ σγ
∑

1�j<k�3

I
(j,k)

α,β,γ (t1, t2, t3).

The coefficients I
(j,k)

α,β,γ are given as follows:

I
(1,2)
0,1,1 = 0,

I
(1,2)
1,0,1 = θ2

θ2(2η)

{
θ4(2t13)θ3(2t23)

θ4(2η)θ3
H3(2t12) +

θ3(2t13)θ4(2t23)

θ3(2η)θ4
H4(2t12)

}
,

I
(1,2)
1,1,0 = 2[t13][t23]H2(2t12),

I
(1,2)
1,2,3 = (−i)

{
[t13]

θ4(2t23)

θ4(2η)
H2(2t12) − θ2θ3(2η)

θ2(2η)θ3

θ4(2t13)

θ4(2η)
[t23]H3(2t12)

}
,

I
(1,2)
1,3,2 = (−i)

{
θ2θ4(2η)

θ2(2η)θ4

θ3(2t13)

θ3(2η)
[t23]H4(2t12) − [t13]

θ3(2t23)

θ3(2η)
H2(2t12)

}
,

I
(1,3)
0,1,1 = I

(1,3)
1,1,0 = 0,

I
(1,3)
1,0,1 = θ2

3 (2η)θ2
4 + θ2

4 (2η)θ2
3

θ3θ4θ3(2η)θ4(2η)
[t12][t23]H2(2t13)

− θ2

θ2(2η)

{
θ4(2t12)θ4(2t23)

θ4(2η)θ4
H3(2t13) +

θ3(2t12)θ3(2t23)

θ3(2η)θ3
H4(2t13)

}
,

I
(1,3)
1,2,3 = (−i)

{
θ2

θ3

θ3(2t12)

θ2(2η)
[t23]H4(2t13) − [t12]

θ4

θ3

θ3(2t23)

θ4(2η)
H2(2t13)

}
,

I
(1,3)
1,3,2 = (−i)

{
[t12]

θ3

θ4

θ4(2t23)

θ3(2η)
H2(2t13) − θ2

θ4

θ4(2t12)

θ2(2η)
[t23]H3(2t13)

}
,

I
(2,3)
1,1,0 = 0,

I
(2,3)
1,0,1 = θ2

θ2(2η)

{
θ3(2t12)θ4(2t13)

θ3θ4(2η)
H3(2t23) +

θ4(2t12)θ3(2t13)

θ3(2η)θ4
H4(2t23)

}
,

I
(2,3)
0,1,1 = 2[t12][t13]H2(2t23),

I
(2,3)
1,2,3 = (−i)

{
θ3(2η)θ4

θ3θ4(2η)

θ2(2t13)

θ2(2η)
[t12]H3(2t23) − [t13]

θ2(2t12)

θ2(2η)
H4(2t23)

}
,

I
(2,3)
1,3,2 = (−i)

{
[t13]

θ2(2t12)

θ2(2η)
H3(2t2,3) − θ3θ4(2η)

θ3(2η)θ4

θ2(2t13)

θ2(2η)
[t12]H4(2t23)

}
.

The rest are given by the cyclic change 1 → 2 → 3 → 1 of the indices α, β, γ in I
(j,k)

α,β,γ with
the change 2 → 3 → 4 → 2 of the indices in θa and Ha . The correlators of the inhomogeneous
chain are 〈

σα
1 σ

β

2 σ
γ

3

〉 = − 1

2[t12][t13][t23]

∑
1�j<k�3

I
(j,k)

α,β,γ (t1, t2, t3).
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With the abbreviation H ′
a = H ′

a(0) and H ′′′
a = H ′′′

a (0), we obtain a new formula for the
next-nearest-neighbour correlators for the homogeneous chain

〈
σa

1 σa
3

〉 = −1

4

θ1(2η)

θ ′
1

{
2
θ2
b+1(2η)θ2

c+1 + θ2
c+1(2η)θ2

b+1

θb+1θc+1θb+1(2η)θc+1(2η)
H ′

a+1

+

(
θ1(2η)

θ ′
1

)2
θa+1

θa+1(2η)

{
θc+1

θc+1(2η)

(
θ ′′
b+1

θb+1
H ′

b+1 +
2θ ′′

c+1

θc+1
H ′

b+1 − H ′′′
b+1

)

+
θb+1

θb+1(2η)

(
θ ′′
c+1

θc+1
H ′

c+1 +
2θ ′′

b+1

θb+1
H ′

c+1 − H ′′′
c+1

)}}
.

We have in addition〈
σa

1 σb
2 σ c

3

〉 = 0,
〈
σ c

1 σb
2 σa

3

〉 = 0.

In both formulae, (a, b, c) = (1, 2, 3), (2, 3, 1), (3, 1, 2).
Lashkevich communicated to us a program for numerically calculating correlation

functions from the integral formula of [25, 26]. For n = 2 and n = 3, we found agreement
between their results and ours to within the precision of 10−4.

4.3. Trigonometric limit

Finally, we briefly touch upon the trigonometric limit and discuss how various quantities which
appear in (4.1) are related to the trigonometric counterpart.

First, we consider the limit to the massive regime. For this purpose, it is convenient to
rewrite the R matrix in terms of the parameters t ′, η′, τ ′ in (2.30) as

R(t) = ρ ′(t ′)
[t ′ + η′]′

(U ⊗ U)r ′(t ′)(U ⊗ U)−1,

where [t ′]′ = θ1(2t ′|τ ′)/θ1(2η′|τ ′), r ′(t ′) is obtained from (2.2) by replacing t, η, τ by t ′, η′, τ ′,

and U = (
1 1
1 −1

)
. In the limit τ ′ → +i∞, while keeping λ = t ′/η′ and ν = 2η′ fixed, the R

matrix tends to

RXXZ(λ) = ρXXZ(λ)
rXXZ(λ)

[λ + 1]XXZ
. (4.8)

In the above, [λ]XXZ = sin πνλ/ sin πν and

rXXZ(λ) = 1

2

(
sin (λ + 1/2)πν

sin πν/2
σ 0 ⊗ σ 0 + σ 1 ⊗ σ 1 + σ 2 ⊗ σ 2 +

cos (λ + 1/2)πν

cos πν/2
σ 3 ⊗ σ 3

)
,

(4.9)

ρXXZ(λ) = −ζ
(q2ζ 2)∞(ζ−2)∞
(q2ζ−2)∞(ζ 2)∞

, (4.10)

where ζ = eπ iνλ, q = eπ iν, (x)∞ = ∏∞
j=0(1 − q4j x). It is easy to see that

ω1(t) → 8π

sin πν
ω(λ), ω2(t) → 8π

sin πν
ω̃(λ), ω3(t) → 0,
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where the functions ω(λ), ω̃(λ) are given by [4], equations (13.2)–(13.5) for the massive
regime. Hence, the limit of (4.1) becomes

lim
τ ′→i∞

〈
σ 3

1 σ 3
2

〉 = −4

(
q + q−1

(q − q−1)2
ω(λ) +

ζ + ζ−1

(q − q−1)(ζ − ζ−1)
ω̃(λ)

)
,

lim
τ ′→i∞

〈
σ 1

1 σ 1
2

〉 = lim
τ ′→i∞

〈
σ 2

1 σ 2
2

〉 = 2

(
ζ + ζ−1

(q − q−1)2
ω(λ) +

q + q−1

(q − q−1)(ζ − ζ−1)
ω̃(λ)

)
,

(4.11)

which reproduces the formulae in the massive regime (see [4], example in section 3).
Second, let us consider the limit to the massless regime. We set

τ = − 1

π i
r, η = − ν

2π i
r, t = − νλ

2π i
r

for a constant ν (0 < ν < 1) and take the limit r ↓ 0 with ν and λ fixed.
The limit of the R matrix is given by the same formulae (4.8)–(4.9), with ρXXZ(λ) being

replaced by

ρXXZ(λ) = −S2(−λ)S2(1 + λ)

S2(λ)S2(1 − λ)
.

Here, S2(x) = S2(x|2, 1/ν) signifies the double sine function. In the limit, we have

rω1(t) → − 8π2i

sin πν
ω(λ), rω2(t) → − 8π2i

sin πν
ω̃(λ),

where now ω(λ) and ω̃(λ) stand for the functions given by [4], equations (13.2)–(13.5) for the
massless regime. Moreover, we have

r e
π2

r

(
t

∂

∂t
+ η

∂

∂η
+ τ

∂

∂τ

)
log ϕ → 0.

From the formulae above, we see that in the massless limit, the function h2(t1, t2) tends to the
solution h2(λ1, λ2) of the reduced qKZ equation given in [4].
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Appendix A. Existence of Trλ

For every finite-dimensional representation of the Sklyanin algebra A, we can define the trace,
which is a functional on A whose main property is cyclicity. In order to formulate our ansatz
for correlation functions, we need an analytic continuation of this functional with respect to
the dimension. We denote this analytic continuation by TrλA, where A ∈ A and λ = k + 1 for
π(k)(A). In section 2.3, we presented the formulae for TrλSα, TrλS2

α (α = 0, 1, 2, 3). In this
appendix, we discuss the general case. In fact, we prove that for generic parameters J1, J2, J3,
the definition of TrλA for general A ∈ A can be reduced to these known cases.

Consider the polynomial ring F = K[K0,K2] with K = C(J1, J2, J3). Here, we consider
K0,K2, J1, J2, J3 as variables, whereas they are parametrized by τ , η and λ in section 2 and
appendix B. We use the parametrization in order to define finite-dimensional representations.
The discussion in this appendix is mainly concerned with the algebraic relations in the Sklyanin
algebra only.

We denote by A the Sklyanin algebra defined over the field K. It is a graded vector space,

A = ⊕∞
n=0An, dim An < ∞.

Multiplication by the central elements (2.13) endows A with an F-algebra structure.
Suppose we try to define some F-linear functional Tr on A which satisfies cyclicity
Tr(AB) = Tr(BA). Then, the question is, for how many independent elements of A this
functional should be defined. In other words, describe the F-module

H = A/A′,
where

A′ =
3∑

α=0

[Sα, A].

Note that H = ⊕∞
n=0Hn, where Hn = An/A′

n, A′
n = ∑3

α=0[Sα, An−1].
We prove

Theorem A.1. The F-module H is a rank 7 free module generated by the monomials

(mi)1�i�7 = (
1, S0, S1, S2, S3, S

2
0 , S2

3

)
. (A.1)

The F-linear independence of these elements follows from (2.20)–(2.23). Indeed, suppose
there is a relation

∑7
i=1 cimi = 0 with ci ∈ F. The sum over elements of even degree and

of odd degree must vanish separately. Specialize Ji to the value (2.11) with η �∈ Q + Qτ,

Im η > 0, and take the trace of both sides on the representation V(k) for k ∈ Z�0. By
lemma C.2, it follows that ci = 0 except for i = 3, 4, 5. To see that the latter vanish, it is
enough to apply the automorphisms ι1, ι3 (see (D.1) and (D.2) and two lines above) and take
the trace.

Let us prove the spanning property.
Consider the tensor algebra T over the field K generated by four independent variables

S0, S1, S2 and S3. Set R = T[K0,K2]. It is a graded algebra: R = ⊕∞
n=0Rn, where we have

dimKRn < ∞. We have the isomorphism of K-vector spaces

Hn � Rn

/(∑
Rn−2([S0, Sa] − iJb,c(SbSc + ScSb))

+
∑

Rn−2([Sb, Sc] − i(S0Sa + SaS0)) +
∑

[Sa, Rn−1]

+ Rn−2

(
3∑

α=0

S2
α − K0

)
+ Rn−2

(
3∑

a=1

JaS
2
a − K2

))
. (A.2)
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The K-vector space Rn is spanned by the monomials of the form K
m0
0 K

m2
2 Sα1 · · · Sαl

where
2m0 + 2m2 + l = n. The relations which define Hn in (A.2) are linear relations for these
monomials. For each n, the coefficients of these linear relations form a matrix Mn with
entries in K.

The spanning property is clear for n = 0, 1. Suppose that n � 2. Divide the set of
monomials of degree n into two groups: the first group is the monomials such that the part
Sα1 · · · Sαl

is equal to one of mi (1 � i � 7) and the second group is the rest. The matrix Mn

is divided into two blocks: Mn = (M′
n,M′′

n) where M′
n (resp. M′′

n) corresponds to the first
(resp. the second) group of monomials. It suffices to show that the rank of M′′

n is equal to the
cardinality of the second group.

The proof of this statement exploits the classical limit:

Ja = 1 − ε2ja, ε → 0. (A.3)

We introduce new variables sα(α = 0, 1, 2, 3) and k0, k1 by

S0 = εs0, Sa = sa (a = 1, 2, 3), (A.4)

K0 = k0, K2 = k0 − ε2k1. (A.5)

In appendix B, the classical limit is taken as η → 0 instead of ε → 0. In this appendix, we
avoid the parametrization by τ , η and λ in order to simplify the argument.

In the limit ε → 0, we have

[sα, sβ] = iε{sα, sβ} + O(ε2), (A.6)

where the Poisson bracket is defined by

{s0, sa} = 2jb,csbsc, (A.7)

{sb, sc} = 2s0sa. (A.8)

Here, ja,b = −jb,a = ja − jb and (a, b, c) run over cyclic permutations of (1, 2, 3). In
the classical limit, the variables sa become commutative. Let Kcl = C(j1, j2, j3) denote the
field of rational functions in ja and let Fcl = Kcl[k0, k1], Acl = Kcl[s0, s1, s2, s3] denote the
polynomial ring in indeterminates k0, k1 and sα (0 � α � 3), respectively. The Casimir
relations (2.13) become the algebraic relations

s2
1 + s2

2 + s2
3 = k0, (A.9)

s2
0 + j1s

2
1 + j2s

2
2 + j3s

2
3 = k1 (A.10)

in Kcl[s0, s1, s2, s3, k0, k1]:

Acl � Kcl[s0, s1, s2, s3, k0, k1]
/(

s2
1 + s2

2 + s2
3 − k0, s

2
0 + j1s

2
1 + j2s

2
2 + j3s

2
3 − k1

)
.

This makes Acl an Fcl-algebra. The algebra Acl is graded as well: Acl = ⊕∞
n=0Acl

n . Let
(Acl)′n ⊂ Acl

n be the limit (in the appropriate Grassmannian such that we consider sα as
commutative variables) of A′

n as ε → 0. Then, we see
∑3

α=0

{
sα, Acl

n−1

} ⊂ (Acl)′n from (A.6).
In order to show the spanning property of (mi)1�i�7 in H, it is therefore sufficient to show the
spanning property for(

mcl
i

)
1�i�7 = (

1, s0, s1, s2, s3, s
2
0 , s2

3

)
. (A.11)

in Hcl = ⊕∞
n=0Hcl

n , where

Hcl
n = Acl

n

/ 3∑
α=0

{
sα, Acl

n−1

}
. (A.12)
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In conclusion, theorem A.1 follows from

Proposition A.2. The Fcl-module Hcl is a rank 7 free module generated by the monomials
(A.11).

Proof. The Fcl-linear independence of mcl
i follows from the same argument as in the quantum

case. In place of trace on V(k), we use the non-degenerate pairing between cycles and cocycles
given in appendix B.

We prove the spanning property. Define

∇0 = j2,3s2s3
∂

∂s1
+ j3,1s3s1

∂

∂s2
+ j1,2s1s2

∂

∂s3
,

∇a = −jb,csbsc

∂

∂s0
+ s0sc

∂

∂sb

− s0sb

∂

∂sc

,

where (a, b, c) = (1, 2, 3), (2, 3, 1), (3, 1, 2). We have ∇αP = 1
2 {sα, P }. These are Fcl-

linear.
We want to show that modulo

∑3
α=0 ∇αAcl any monomial s

m0
0 s

m1
1 s

m2
2 s

m3
3 can be reduced

to an element in Fcl · 1 +
∑3

α=0 Fcl · sα +
∑3

α=0 Fcl · s2
α . Set

Acl[−1] =
∑

0�α<β�3

sαsβAcl, Hcl[−1] = Acl[−1]

/ 3∑
α=0

∇αAcl.

We also denote Hcl[0] = Hcl and Acl[0] = Acl.
Since

Acl =
(

3∑
α=0

∞∑
n=0

Kclsn
α

)
⊕ Acl[−1],

by using (A.9) and (A.10), the above statement follows from the following:

Hcl[−1] = Fclk0s0 +
3∑

a=1

Fcl(k1 − jak0)sa +
3∑

a=1

Fcl(k1 − jak0)s
2
a . (A.13)

Note that

k1 − jak0 = s2
0 + jb,as

2
b + jc,as

2
c ,

and therefore we have k0s0, (k1 − jak0)sa , (k1 − jak0)s
2
a ∈ Acl[−1].

Let us prove (A.13). Suppose that a monomial m = s
n0
0 s

n1
1 s

n2
2 s

n3
3 ∈ Hcl[−1] is such that

�{a|na ∈ 2Z + 1} � 2, e.g., n0, n1 ∈ 2Z + 1. By using the Casimir relations (A.9) and (A.10),
we can replace s2

0 and s2
1 with s2

2 and s2
3 . Therefore, we have

m ∈ s0s1Fcl[s2, s3].

Since

∇2
(
s
j

2 sk
3

) = ks0s1s
j

2 sk−1
3 ,

we have

m = 0.

Next consider the case �{a|na ∈ 2Z + 1} = 1. Suppose n0 ∈ 2Z + 1. Then, we have

m ∈ s0s
2
2 Fcl

[
s2

2 , s
2
3

]
+ s0s

2
3 Fcl

[
s2

2 , s
2
3

]
.

Since

∇1
(
si

1s
l
2s

k
3

) = ls0s
i
1s

l−1
2 sk+1

3 − ks0s
i
1s

l+1
2 sk−1

3 ,
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the monomial m belongs to Kcls0s
2j

2 ⊂ Hcl[−1], where 2j + 1 = n0 + n1 + n2 + n3. Similarly,
we see that

k
j

0 s0 ∈ Kcls0s
2j

2 .

Since k
j

0 s0 is a non-zero element in Hcl[−1], we have

m ∈ Kclk
j

0 s0.

The case na ∈ 2Z + 1(a = 1, 2, 3) is similar.
The remaining case is n0, n1, n2, n3 ∈ 2Z and �{a|na > 0} � 2. We have deg m � 4.

Note that

Hcl[−1]

4 =
∑

0�i<j�3

Kcls2
i s

2
j .

We have the following relations in Hcl[−1]

4 :

∇1(s0s2s3) = −j2,3s
2
2s

2
3 + s2

0s
2
3 − s2

0s
2
2 ,

∇2(s0s3s1) = −j3,1s
2
3s

2
1 + s2

0s
2
1 − s2

0s
2
3 ,

∇3(s0s1s2) = −j1,2s
2
1s

2
2 + s2

0s
2
2 − s2

0s
2
1 .

Therefore, we have dim Kcl Hcl[−1]

4 � 3. On the other hand, (k1−jak0)s
2
a ∈ Hcl[−1]

4 for a = 1, 2, 3,
and they are Kcl-linearly independent. Therefore, we have

Hcl[−1]

4 = ⊕3
a=1Kcl(k1 − jak0)s

2
a .

Observe that for (a, b, c) = (1, 2, 3), (2, 3, 1), (3, 1, 2), we have

∇a

(
s
n0+1
0 s

n1
1 s

n2
2 s

n3
3

) = −(n0 + 1)jb,cs
n0
0 sna

a s
nb+1
b snc+1

c

+ nbs
n0+2
0 sna

a s
nb−1
b snc+1

c − ncs
n0+2
0 sna

a s
nb+1
b snc−1

c .

We can increase the power in s0 by rewriting s
n0
0 sna

a s
nb+1
b snc+1

c in terms of s
n0+2
0 sna

a s
nb−1
b snc+1

c

and s
n0+2
0 sna

a s
nb+1
b snc−1

c . Thus, we see that the Kcl-vector space Hcl[−1]

2j (j � 3) is spanned by

s2d
0 s2(j−d)

a (a = 1, 2, 3; 1 � d � j − 1).

On the other hand, the space Hcl[−1]

2j contains Kcl-linearly independent elements

kd
0 k

j−d−2
1 (k1 − jak0)s

2
a (a = 1, 2, 3; 0 � d � j − 2). (A.14)

Therefore, the elements (A.14) span Hcl[−1]

2j . �

In the rest of this appendix, we explain a mathematical background of proposition A.2,
which is the de Rham cohomology of the affine algebraic variety defined by the two quadrics
(A.9) and (A.10). Although our proof is independent, the statement of proposition A.2 is
closely related to a result of Saito.

We set

M = {(j1, j2, j3) ∈ C3|ja �= jb for a �= b}.
Let

ϕ : X = C4 × M → Y = C2 × M (A.15)

be the mapping such that ϕ = (ϕ1, . . . , ϕ5) and for (s, j) = (s0, s1, s2, s3, j1, j2, j3) ∈ C4 ×M

we have

ϕ1(s, j) = s2
1 + s2

2 + s2
3 , (A.16)

ϕ2(s, j) = s2
0 + j1s

2
1 + j2s

2
2 + j3s

2
3 , (A.17)
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ϕ3(s, j) = j1, (A.18)

ϕ4(s, j) = j2, (A.19)

ϕ5(s, j) = j3. (A.20)

The critical set C ⊂ C4 × M of this mapping is given by the equation

dϕ1 ∧ · · · ∧ dϕ5 = 0.

We have

C =
3⋃

α=0

{(s, j)|sβ = 0 for β �= α}.

We have the commutative diagram

X ⊃ C! !
Y ⊃ D

,

where the discriminant set D is given by

D = {(k0, k1, j1, j2, j3) ∈ C2 × M|�(k0, k1, j1, j2, j3) = 0}, (A.21)

� = k0

3∏
a=1

(k1 − jak0). (A.22)

The inverse image ϕ−1(0) is called the simple-elliptic singularity of type D̃5 [29]. If y ∈ Y

does not belong to D, the inverse image Xy = ϕ−1(y) is a non-singular affine complex surface
and is called a smoothing of the singularity. The mapping

ϕ|X−ϕ−1(D) : X − ϕ−1(D) → Y − D (A.23)

is a locally topologically trivial fibre space and the homology group is of rank 7: H2(Xy, Z) =
Z7. In appendix B, we construct cycles in H2(Xy, Z). (In [31], Saito defined the extended affine
root systems. The homology group H2(Xy, Z) is isomorphic to D

(1,1)

5 in his classification.
We have not identified our cycles in D

(1,1)

5 .)
Let �

p

X be the sheaf of OX-modules consisting of germs of holomorphic p forms on X,
and �

p

X/Y the quotient sheaf

�
p

X/Y = �
p

X

/ 5∑
i=1

dϕi ∧ �
p−1
X . (A.24)

The relative de Rham complex (�•
X/Y , dX/Y ) is defined by the commutative diagram

dX/Y : �
p

X/Y → �
p+1
X/Y

↑ ↑
d: �

p

X → �
p+1
X .

This is an exact sequence of OX-modules. The following is Saito’s result [32].

Theorem A.3. The cohomology group

H 2(ϕ∗(�•
X/Y )) = Ker

(
ϕ∗
(
�2

X/Y

) dX/Y→ ϕ∗
(
�3

X/Y

))/
Im
(
ϕ∗
(
�1

X/Y

) dX/Y→ ϕ∗
(
�2

X/Y

))
is an OY locally free module of rank 7.
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We connect the above algebro-geometric setting to ours. The following proposition is a
corollary to theorem A.3. Here, we give a proof in the line of this appendix without using
Saito’s result.

Proposition A.4. Consider a complex of Fcl-modules:

Zp =
⊕

0�α1<···<αp�3

Acl dsα1 ∧ · · · ∧ dsαp
, Z̄p = Zp

/∑
j=1,2

dϕj ∧ Zp−1.

The cohomology group Hcl[−2] def= Ker(Z̄2 d→ Z̄3)/Im(Z̄1 d→ Z̄2) is a Fcl-free module of rank
7, where the action of k0 (resp. k1) is given by the multiplication of ϕ1 (resp. ϕ2).

Proof. The key idea of the proof is to identify Acl[−1] with Z̄2.
Let us introduce a holomorphic section ω of the sheaf �2

X/Y

∣∣
X−C

.

ω = ds1 ∧ ds2

s0s3
= ds2 ∧ ds3

s0s1
= ds3 ∧ ds1

s0s2

= ds0 ∧ ds1

j2,3s2s3
= ds0 ∧ ds2

j3,1s3s1
= ds0 ∧ ds3

j1,2s1s2
.

Consider the Fcl-module

Ãcl def= Kcl ⊗C[j1,j2,j3] C[s0, s1, s2, s3, j1, j2, j3]ω.

We have a canonical isomorphism of Fcl-modules

Acl � Ãcl,

sending P ∈ Acl to Pω ∈ Ãcl. It is easy to see that

Acl[−1]ω = Z̄2.

We have

d(P dsα) = −∇α(P )ω (A.25)

for P ∈ Acl. From (A.25), we have

Im(Z̄1 d→ Z̄2) =
(

3∑
α=0

∇αAcl

)
ω.

We have already constructed the Fcl-bases of the modules Acl
/∑3

α=0 ∇αAcl and Acl[−1]
/∑3

α=0 ∇αAcl. We will construct a basis of Ker(Z̄2 d→ Z̄3)/Im(Z̄1 d→ Z̄2). First, observe that

Z̄3 =
∞⊕

n=0

Kclsn
0 ds1 ∧ ds2 ∧ ds3 +

3∑
a=1

∞⊕
n=0

Kclsn
a ds0 ∧ dsb ∧ dsc,

where (a, b, c) = (1, 2, 3), (2, 3, 1), (3, 1, 2). From this we see that

Ker(Z̄2 d→ Z̄3) =
∑

0�α<β<γ�3

Aclsαsβsγ ω ⊕
∑

m,n�1
m,n�=2

∑
0�α<β�3

Kclsm
α sn

βω

⊕
∑
n�1
n�=2

 ∑
1�a �=b�3

Kcl
(
s2

0 + jabs
2
b

)
sn
aω +

∑
1�a�2

Kcl
(
s2
a − s2

a+1

)
sn

0 ω


⊕

∑
1�a<b�3

Kcl
(
jabs

2
as

2
b + s2

0s
2
a − s2

0s
2
b

)
ω.
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We know that the Fcl-module Z̄2/Im(Z̄1 d→ Z̄2) has the free generators κ0 = k0s0ω,
κa = (k1 − jak0)saω(a = 1, 2, 3) and ρa = (k1 − jak0)s

2
aω(a = 1, 2, 3). For each

degree e � 3 and colour c = 0, 1, 2, 3, we want to construct elements of degree e and

colour c in Ker(Z̄2 d→ Z̄3) by taking Kcl-linear combinations of km
0 kn

1κα(α = 0, 1, 2, 3) and
km

0 kn
1ρa(a = 1, 2, 3). We set ρ0 = k0s

2
0ω. We have the relation ρ0 = ρ1 + ρ2 + ρ3. A

straightforward calculation shows that for e = 3, 4 we have none; for e = 5 we find ξ0 = k0κ0

for colour 0 and ξa = (k1 − jak0)κa for colour a = 1, 2, 3; for e = 6 we find two colour 0
elements:

ξ4 = (k1 − j1k0)ρ1 − (k1 − j2k0)ρ2 − j1,2k0ρ0,

ξ5 = (k1 − j2k0)ρ2 − (k1 − j3k0)ρ3 − j2,3k0ρ0.

For e = 5, 6 the above elements span the degree e cohomology classes. For e = 8, we have
four obvious elements kiξj (i = 0, 1; j = 4, 5), and in addition, we find

ξ6 = 1

4
k2

0

3∑
a=1

∑
b �=a

ja,bρa + k0

3∑
a=1

(k1 − jak0)ρa.

These five elements span the degree 8 cohomology classes.

Finally, we show that ξa(0 � a � 6) are the generators of the Fcl-module Ker(Z̄2 d→
Z̄3)/Im(Z̄1 d→ Z̄2). For odd e = 2n + 3 � 7, let us consider the colour 0 case. The cases of

other colours are similar. The degree 2n + 3 and colour 0 space in Z̄2/Im(Z̄1 d→ Z̄2) has the
Kcl-basis consisting of n + 1 elements k

j

0k
(n−j)

1 κ0 (0 � j � n). We have

d
(
kn

1κ0
) = 3s2n

0 ds1 ∧ ds2 ∧ ds3 ∈ Z̄3.

Therefore, the Kcl-dimension of the degree 2n + 3 and colour 0̄ subspace of Ker(Z̄2 d→
Z̄3)/Im(Z̄1 d→ Z̄2) is n. Since the Kcl-linearly independent elements k

j

0k
n−1−j

1 ξ0 (0 � j �
n − 1) belong to this subspace, they span the subspace.

For even e = 2n + 4 � 10, the degree 2n + 4 subspace of Z̄2/Im(Z̄1 d→ Z̄2) has
the Kcl-basis consisting of 3(n + 1) elements k

j

0k
(n−j)

1 ρa(0 � j � n; a = 1, 2, 3). A simple
calculation shows that the elements d

(
kn

1ρ0
)
, d
(
kn

0ρa

)
(a = 1, 2, 3) are Kcl-linearly independent

in Z̄3. Therefore, the Kcl-dimension of the degree 2n + 4 subspace of Ker(Z̄2 d→ Z̄3)/

Im(Z̄1 d→ Z̄2) is 3n − 1. On the other hand, we obtain 3n − 1 independent elements of the
subspace from the degree 6 elements ρ4, ρ5 and the degree 8 element ρ6. We conclude that
they span the subspace. �

We have explicitly constructed free bases for the spaces Hcl[0] ⊃ Hcl[−1] ⊃ Hcl[−2]. In
[32], similar spaces are studied for hypersurface singularities Ẽ6, Ẽ7, Ẽ8. The results in this
appendix supplement some part of his construction in D̃5, where the elliptic singularity is
given by a complete intersection of two quadrics.

Appendix B. Cycles and integrals in the classical limit

In the classical limit, the defining relations of the Sklyanin algebra turn into (A.9) and (A.10),
which define an affine algebraic surface S ⊂ C4. In this section, we study the classical limit
of the functional Trλ and identify it with an integral over a cycle on S.
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Sklyanin’s formulae for the representation (2.16) give an explicit uniformization of S.
Consider the limit

η → 0, λ → ∞, ηλ ≡ µ finite.

On the right-hand side of (2.16), we replace η∂u by −2π iv, where v is the variable canonically
conjugate to u,

2π{v, u} = 1.

In the limit, the formulae for s0 = S0, sa = ηSa (a = 1, 2, 3) tend to

sα(u, v) = cα

θα+1(2u − µ) e−2π iv − θα+1(−2u − µ) e2π iv

θ1(2u)
, (B.1)

where (u, v) ∈ C2 and

c0 = 1

2
, ca = √

εa

θa+1(0)

2θ ′
1

for a = 1, 2, 3.

Equation (B.1) provides a parametrization of the surface (A.9) and (A.10) with

k0 =
(

θ1(µ)

θ ′
1

)2

, k1 =
(

θ1(µ)

θ ′
1

)2

∂2 log θ1(µ). (B.2)

For definiteness, we consider the case τ ∈ iR>0, 0 < µ < 1/2. The functions sα have
common periods

e1 = (1, 0), e2 = (0, 1), e3 = (τ, 2µ),

so (u, v) should be regarded as variables on C2/(∑3
i=1 Zei

)
. We shall consider the

fundamental domain:

0 � Re (u) < 1, 0 � Im (u) <
1

i
τ, 0 � Re (v) < 1.

There are also pole divisors of sα at u = pi , where

p0 = 0, p1 = 1

2
, p2 = 1 + τ

2
, p3 = τ

2
. (B.3)

If we neglect these divisors, there are, obviously, three non-trivial 2-cycles which are tori with
generators (e1, e3), (e1, e2), (e2, e3). We denote them by γ0, γ1, γ2. One can choose the tori
γ1, γ2 so that they do not intersect with the pole divisors. As for γ0, the first impression is that
it hits the divisors. But actually one has to be very careful at this point. From formula (B.1),
it follows that there are no singularities at (B.3) if u = p0, p1 and v = 0, 1/2, or u = p2, p3

and v = µ,µ + 1/2. Hence, the actual divisors are D = D′ ∪ D′′, with

D′ = ∪i=0,1{(pi, v) | 0 � Re (v) < 1, v �= 0, 1/2},
D′′ = ∪i=2,3{(pi, v) | 0 � Re (v) < 1, v �= µ,µ + 1/2}.

(B.4)

This means, first of all, that we can modify γ0 at v = 0 and v = µ into a well-defined cycle
without intersection with D, as depicted in figure 1.

Now we have another possibility. We can draw spheres δ0, δ1 which have as south (resp.
north) poles the points (p0, 0), (p1, 0) (resp. (p0, 1/2), (p1, 1/2)). In the vicinity of these
points, they are parallel to the u-plane, and every section of it by the plane Re (v) = a for
0 < a < 1/2 is a cycle around p0, p1 in the u-plane (see figure 2). These spheres do not
intersect D. Similarly, we construct spheres δ2, δ3 which have as south (resp. north) poles the
points (p2, µ), (p3, µ) (resp. (p2, µ + 1/2), (p3, µ + 1/2)).

The homology group H2(S, Z) � Z7 is known. We will see below that our cycles
δ0, δ1, δ2, δ3, γ0, γ1, γ2 ∈ H2(S, Z) give a linearly independent basis in H2(S, C).
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Re(v)

u

Figure 1. The cycle γ0.

u

Re(v)

Figure 2. The cycle δi (i = 0, . . . , 3).

Using our seven monomials, we construct 2-forms

ω = − 1

4π

ds1 ∧ ds2

s0s3
, ω0 = s2

0ω, ω3 = s2
3ω,

σα = sαω, α = 0, 1, 2, 3.

By direct computation, we check that in Sklyanin’s parametrization (B.1)

ω = du ∧ dv. (B.5)

This formula allows us to calculate the integrals explicitly.
Let us start with the cycles δα . We obtain∫

δα

ω =
∫

δα

ωβ = 0,

∫
δα

σβ = 2εαβcβ

θβ+1(−µ)

θ ′
1

,

where εαβ are elements of the matrix

ε =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

.


Note, in particular, that∫

∑3
α=0 δα

σβ = 0 (B.6)

for β = 1, 2, 3.
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For the integrals over γk (k = 1, 2), we find∫
γk

σα = 0,

∫
γ1

ω = 1,

∫
γ2

ω = τ,∫
γ1

ωα = −2

(
cαθα+1(µ)

θ ′
1

)2

∂2 log θα+1(µ),∫
γ2

ωα = −2

(
cαθα+1(µ)

θ ′
1

)2 (
τ∂2 log θα+1(µ) + 2π i

)
.

For γ0, we introduce

γ̃0 = γ0 − 2µγ1 +
1

2

3∑
β=0

δβ.

Then, we have ∫
γ̃0

ω =
∫

γ̃0

σα = 0,

∫
γ̃0

ωα = 2

(
cαθα+1(µ)

θ ′
1

)2

∂ log θ2
α+1(µ),

Using the above formulae, we can calculate the determinant of the period matrix as

det (P) = Const · θ1(2µ) (θ1(µ)θ0(µ))2 ∂

∂µ
log

(
θ1(µ)

θ0(µ)

)
,

whence we conclude that for generic µ, the period matrix is non-degenerate.
Comparison with the quantum formulae (2.20) and (2.21) shows the exceptional role of

the cycle γ0 as η → 0,

Trλ(Sα) ∼ 1

2η

∫
γ0

sαω

Trλ(S
2
α) ∼ 1

2η

∫
γ0

s2
αω ×


1 (α = 0),

1

η2
(α = 1, 2, 3).

Actually, classical limits of all the elements of F in (2.22)–(2.24) can be found among integrals
over the cycles γ0, γ1, γ2. This fact played an important heuristic role in the calculation of
traces.

Appendix C. Technical lemmas

In this appendix, we collect some technical matters related to Trλ.
The first is the colour conservation for Trλ.

Lemma C.1. If A ∈ A(m,n), then

TrλA = 0 unless (m, n) = (0, 0).

Proof. Set

ϕ1(f )(u) := f
(
u +

τ

2

)
e2π iku, ϕ2(f )(u) := f

(
u +

1

2

)
.

One verifies easily that ϕ1, ϕ2 ∈ End(V(k)) and

ϕ1 ◦ π(k)(Sα) ◦ ϕ−1
1 = (−1)ᾱ1π(k)(Sα),

ϕ2 ◦ π(k)(Sα) ◦ ϕ−1
2 = (−1)ᾱ2π(k)(Sα),
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where ᾱ = (ᾱ1, ᾱ2) ∈ Z2 × Z2. It follows that

trV (k)π(k)(A) = (−1)m trV (k)π(k)(A) = (−1)n trV (k)π(k)(A),

whence the lemma. �

The next lemma is concerned about the uniqueness of the representation of Trλ.

Lemma C.2. Assume Im η, Im τ > 0, η �∈ Q + Qτ . Let gi (i = 1, 2, 3) be elliptic
functions with periods 1 and τ , and set f (u) = ζ(u)g1(u) + ug2(u) + g3(u), where
ζ(u) = −(1/2πi)θ ′

1(u)/θ1(u). If there exists an N > 0 such that f (kη) = 0 holds for
all integers k > N , then we have gi(u) ≡ 0 (i = 1, 2, 3).

Proof. We divide into three cases: (i)g1(u) = g2(u) = 0, (ii)g1(u) �≡ 0 and g2(u) = 0, (iii)
g2(u) �≡ 0.

Since K = {kη | k > N} has accumulation points, the assertion is evident in case (i). Let
us show that cases (ii) and (iii) lead to contradictions.

In case (ii), considering f (u)/g1(u), we may assume g1(u) = 1. Then, f (u + τ) =
f (u) + 1. Choose a point u0 ∈ C\(K ∪ L) which is not a pole of f (u). One can find a
sequence of integers k1 < k2 < · · · , kn → ∞, such that knη tends to u0 in C/L. Since
Im η > 0, if we write knη = an + bnτ (an, bn ∈ R), then the integer part of bn diverges.
Therefore, f (knη) diverges as n → ∞, which contradicts to the assumption f (knη) = 0.

In case (iii), we may assume g2(u) = 1. Set F(u) = f (u + η) − f (u). We have
F(kη) = 0 (k > N), F(u + 1) = F(u) and F(u + τ) − F(u) = g1(u + η) − g1(u). Hence,
F(u) = G(u) + ζ(u)(g1(u + η) − g1(u)) with some elliptic function G(u). From cases (i) and
(ii), we conclude that F(u) = 0. In particular, g1 is a constant. Considering f ′(u + η)= f ′(u),
we find that f (u) is a linear function. Clearly, this is impossible. �

Let us sketch the derivation of the formulae for TrλSα, TrλS2
α . We have the standard

functional relation

t (1)
(
t − k

2
η
)
t (k)

(
t +

1

2
η
)

= φ(t + η)t(k+1)(t) + φ(t)t (k−1)(t + η)

for the transfer matrices

t (k)(t) := trV(k)

(
r

(k,1)
a,N (t − tN ) · · · r(k,1)

a,1 (t − t1)
) ∈ End(V ⊗N),

where r(k,1)(t) := (π(k)⊗ id)L(t) and φ(t) = ∏N
j=1[t − tj −(k/2)η]. Choosing N = 1, t1 = 0

and applying (C.1), we easily find (2.20). The same method is applicable for (2.21). We find
it slightly simpler to use the difference equation for the matrices X̂

(1,2)
a,2 .

Appendix D. Transformation properties of X̂ (i↪j)
n

Let us study the transformation properties of X̂
(i,j)
n with respect to the shift of variables by

half periods. For that purpose, we exploit the order 4 automorphisms ι1, ι3 of the Sklyanin
algebra A given by

ι1(S0) = −θ1(η)

θ2(η)
S1, ι1(S1) = θ2(η)

θ1(η)
S0, ι1(S2) = i

θ3(η)

θ0(η)
S3, ι1(S3) = −i

θ0(η)

θ3(η)
S2,

ι3(S0) = θ1(η)

θ0(η)
S3, ι3(S1) = θ2(η)

θ3(η)
S2, ι3(S2) = −θ3(η)

θ2(η)
S1, ι3(S3) = θ0(η)

θ1(η)
S0.
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In terms of the L-operator, they can be written as

ι1 (L(t)) = L

(
t +

1

4

)
σ 1, (D.1)

ι3(L(t)) = L

(
t +

τ

4

)
σ 3 × (−i) eπ i(2t+η+τ/4). (D.2)

Lemma D.1. Let A ∈ An be an element of the Sklyanin algebra of even degree n and let
θ1(t)

−n Trt/ηA = gA,1(t) − (t/η)gA,2(t), where gA,1, gA,2 are as in (2.18). Then,

θ1(t)
−n Tr t

η
+ 1

2η
ι1(A) = gA,1(t) −

(
t

η
+

1

2η

)
gA,2(t),

θ1(t)
−n Tr t

η
+ τ

2η
ι3(A) =

(
gA,1(t) +

1

2
gA,3(t) −

(
t

η
+

τ

2η

)
gA,2(t)

)
(−e−π i(τ/2+2t))n/2,

where gA,3(t) = gA,1(t + τ) − gA,1(t) is an elliptic function.

Proof. In view of theorem A.1, it is enough to consider elements A of the form m · S2
α , where

m is a polynomial in K0,K2 of degree (n − 2)/2. For n = 2, the assertion can be verified
from the explicit formula (2.21).

Let It denote the two-sided ideal of A generated by K0 − 4θ1(t)
2/θ1(2η)2, K2 − 4θ1(t +

η)θ1(t − η)/θ1(2η)2 and let �t : A → A/It be the projection. From (2.15) and (2.17), we
have

�t

(
L1

(
s

2

)
L2

(
s

2
− η

))
P−

12 = −θ1(t − s)θ1(t + s)

θ2
1 (2η)

P−
12.

Along with (D.1) and (D.2), it follows that for i = 0, 2,

�t+1/2(ι
1(Ki)) = �t(Ki), �t+τ/2(ι

3(Ki)) = �t(Ki) × (−1) e−π i(τ/2+2t).

The lemma follows from these relations. �

Proposition D.2. The X̂
(i,j)
a,n obey the following transformation laws:

σ 1
k̄
σ 1

k X̂(i,j)
a,n

(
. . . , tk +

1

2
, . . .

)

= X̂(i,j)
a,n (. . . , tk, . . .) ×

{
σ 1

k σ 1
k̄

(k �= i, j),

(−1)n−1 ∏
p(�=i,j) σ 1

pσ 1
p̄ (k = i, j),

(D.3)

σ 3
k̄
σ 3

k X̂(i,j)
a,n

(
. . . , tk +

τ

2
, . . .

)

=


X̂

(i,j)
a,n (. . . , tk, . . .)σ

3
k σ 3

k̄
(k �= i, j),(

X̂
(i,j)
a,n (. . . , tk, . . .) ± 1

2δa1X̂
(i,j)

3,n (. . . , tk, . . .)
)

×(−1)n−1 ∏
p(�=i,j) σ 3

p̄σ 3
p (k = i, j).

(D.4)

In the last line, the upper (resp. lower) sign is chosen for k = i (resp. k = j ). In particular,
X̂

(i,j)

2,n , X̂
(i,j)

3,n are elliptic functions of t1, . . . , tn with periods 1, τ .
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Proof. It is enough to prove the case (i, j) = (1, 2). If k �= 1, 2, this is a simple consequence
of the transformation law of the L-operator

L

(
t +

1

2

)
= −σ 1L(t)σ 1,

L

(
t +

τ

2

)
= −σ 3L(t)σ 3 × e−2π i(2t+η+τ/2).

Consider the case k = 1. Using the automorphism ι1, we have

X̂(1,2)
n

(
t1 +

1

2
, . . .

)
× [t12 + 1/2]

n∏
p=3

[t1p + 1/2][t2p]

= Tr t12
η

+ 1
2η

(
T [1]

(
t1 + t2

2
+

1

4
; t1 +

1

2
, . . . , tn

))
P12P−

11̄P
−
22̄

= Tr t12
η

+ 1
2η

ι1
(

T [1]

(
t1 + t2

2
; t1, . . . , tn

)) n∏
p=2

σ 1
p̄σ 1

pP12P−
11̄P

−
22̄

= σ 1
1̄ σ 1

1 Tr t12
η

+ 1
2η

ι1
(

T [1]

(
t1 + t2

2
; t1, . . . , tn

))
P12P−

11̄P
−
22̄

n∏
p=3

σ 1
p̄σ 1

p.

Applying lemma D.1, we obtain (D.3) with k = 1. Equation (D.4) is shown similarly. The
case k = 2 can be obtained by using the translation invariance. �
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[30] Saito K 1983 Period mapping associated to a primitive form Publ. RIMS, Kyoto Univ. 19 1231–64
[31] Saito K 1985 Extended affine root systems I (Coxeter transformations) Publ. RIMS, Kyoto Univ. 21 75–179
[32] Saito K 1982 On the periods of primitive integrals I RIMS Preprint 412
[33] Shiraishi J 2004 Free field constructions for the elliptic algebra Aq,p(ŝl2) and Baxter’s eight-vertex model Int.
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